Philadelphia University Course Outline

Course Title : INTELLIGENT SYSTEMS 630423
Prerequisite : Discrete Mathematics 630260

Text Book : Artificial Intelligence: A Guide to Intelligent Systems, By: Michael Negnevitsky, Addison Wesley, UK, 2002, ISBN:0-201-71159-1, www.pearsonedu.com, www.booksites.net/negnevitsky

Credit Hours : 3 Level 4th year

Course Goals:

inference system.

*

To cover the principles of artificial intelligence, knowledge acquisition, representation and processing. It covers the design and implementation of intelligent systems and their engineering applications.

Time Schedule:							
Duratio	on:	16 weeks	Lectures:	3 hours /week			
Tutorial:		None	Laboratories:	None			
Objectives:							
At Completing this module the student should be able to :							
1-	Unc	nderstand the principles of artificial intelligence					
2-	Des	esign and implement microprocessor-based real-time systems					
3-	Dea	eal with uncertainty and vague information					
Course Contents							

	Course Contents					
		Week				
*	Chapter 1: An Overview of Artificial Intelligence:	4				
	What is AI, Expert systems, Intelligent systems? History of AI. Knowledge representation techniques					
*	Chapter 2: Rule-based Expert Systems: Structure	4				
	of a rule-base expert system, Characteristics of an ES, Forward & backward chaining inference techniques, Conflict resolution.					
*	Chapter 3: Uncertainty Management in Rule-Based Systems:					
	Probability theory, Certainty factors, Fuzzy logic.					
*	Chapter 4: Fuzzy Expert Systems:					
	Fuzzy sets, Linguistic variables and hedges, Fuzzy rules, Fuzzy inference,					
	Building a fuzzy expert system.					
*	Chapter 5: Frame-Based Expert Systems:	1				
	Frame-based system structure, Inheritance in frame-based systems,					
	Methods and demons, Interaction of frames & rules.					
*	Chapter 6: Artificial Neural Networks:	1				
	What is NN, Multi-layer neural networks, Learning of NNs, Self-organizing					
	NNs.					
*	Chapter 8: Hybrid Intelligent Systems:	1				

1-	First Exam	20%
2-	Second Exam	20%
3-	Qizzes	20%
4-	Final Exam	40%

Mode of Assessment

1

References

- **1- Peter Jackson**, "Introduction to Expert Systems", 3rd edition, Addison-Wesley, USA 1999, ISBN: 0-201-87686-8
- **2- Edmund C. Payne, & Ropert C. McArthur**, "Developing Expert Systems: A Knowledge Engineer's Handbook for Rules & Objects", John Wiley & Sons, USA, 1990.
- **3- Alison Cawsey**, "The Essence of Artificial Intelligence", Prentice Hall, USA, 1998.
- **4- Jeffrey johnson & Philip Picton**, "Concepts in Artificial Intelligence", Butterworth-HeinemannLtd, UK, 1995.
- **5- John Durkin**, "Expert Systems Design & Development", Macmillan Publishing Co, USA, 1994.

Neural expert systems, Neuro-fuzzy systems, Adaptive neuro-fuzzy

What is knowledge engineering? Data mining and knowledge discovery.

Chapter 9: Knowledge Engineering & Data Mining: